# Gas Cooled Fast Reactor (GFR)

Presented at the

Generation IV R&D Scope Meeting Boston, Massachusetts, USA June 25, 2002

by

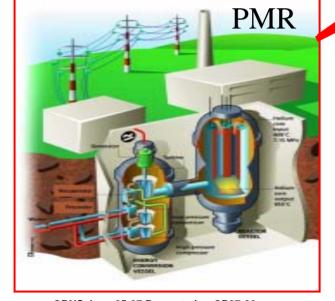
Frank Carre

# Sequenced development of high temperature Gas cooled nuclear energy systems

#### **R & D**

- Fuel particles
- Materials
- He systems technology (850°C)
- Computer codes
- Fuel cycle

# VHTR


**GFR** 

Fast neutrons
Integral fuel cycle
for high
sustainability

> 950°C for VHT heat process



- Fast neutron fuel
- Fuel cycle processes
- Safety systems



GRNS June 25-27 Presentation GP27-00

#### **R & D**

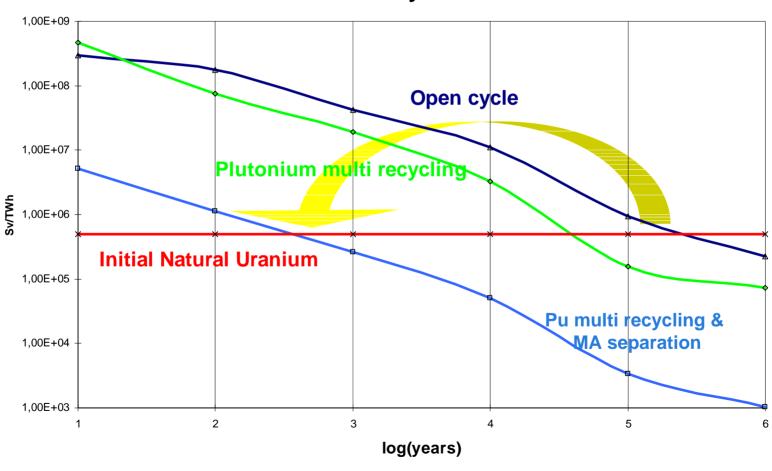
- •VHT materials
- IHX for heat process
- ZrC coated fuel
- I-S cycle H2 production

#### 25-June-2002

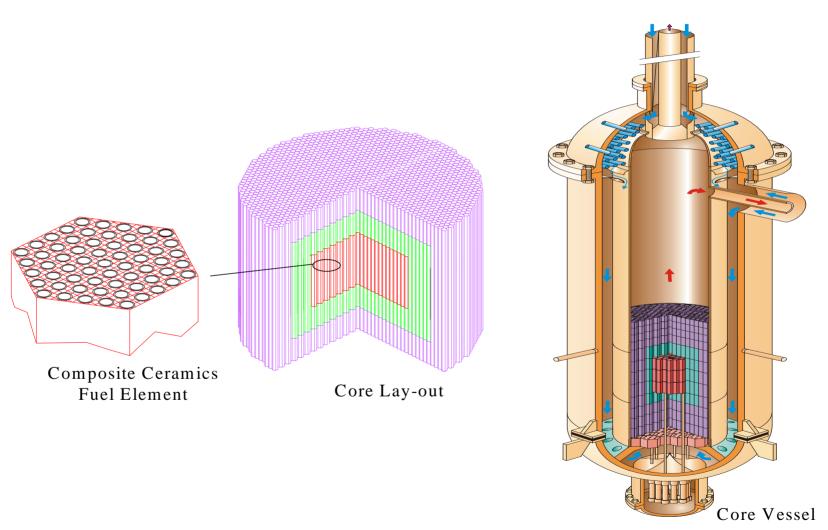
### Rationale for GFR

- GFRs share the sustainability attributes of fast reactors
  - Effective fissioning of Pu and minor actinides
  - Ability to operate on wide range of fuel compositions ("dirty fuel")
  - Capacity for breeding excess fissile material
- Use of He coolant offers advantages of
  - Ease of in-service inspection
  - Chemical inertness
  - Very small coolant void reactivity ( $<\beta_{eff}$ )
  - Potential for very high temperature and direct cycle conversion
- High temperature potential opens possibilities for new applications, including hydrogen production

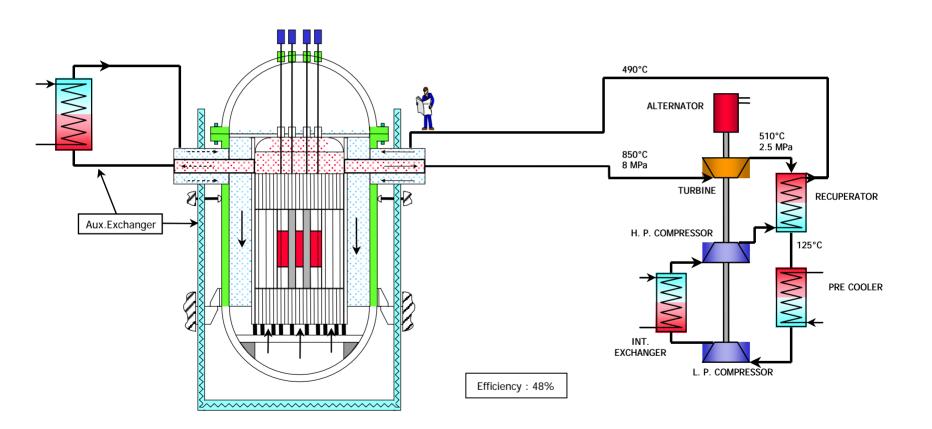
### Main GFR Features


- Closed fuel cycle system with full TRU recycle
  - Co-located fuel cycle facility
- Hardened/fast spectrum core
  - Reduced moderation relative to thermal GCRs

- Direct Brayton cycle energy conversion
  - He coolant, 850°C outlet temperature
  - Efficient electricity generation, potential for  $H_2$  production


GRNS June 25-27 Presentation GP27-00

### Potential improvement of LWR high radioactive waste management


#### Radio toxicity of wastes

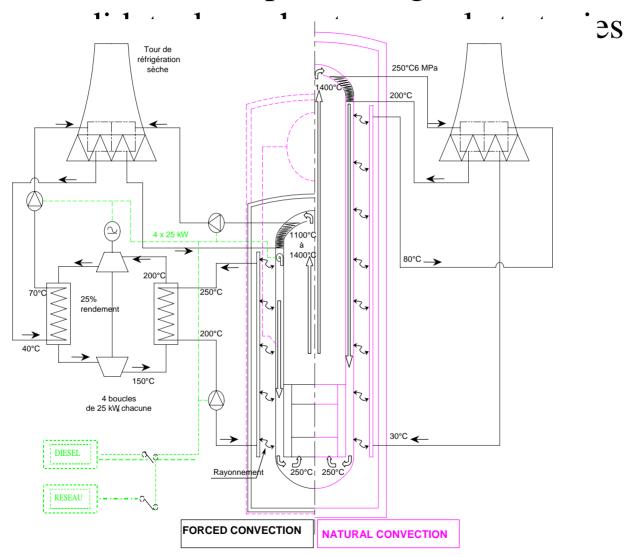


## Gas-cooled Fast Reactor (GFR) Example of candidate design options



### **GFR Plant Schematic**




### Reference GFR Parameters

| System parameter                     | Reference value                      |
|--------------------------------------|--------------------------------------|
| Power plant                          | 600 MWth                             |
| Net efficiency (direct cycle helium) | 48%                                  |
| Coolant pressure                     | 70 bar                               |
| Outlet coolant temperature           | 850 °C                               |
| Inlet coolant temperature            | 490 °C                               |
| Nominal flow & velocity              | 330 kg/s & 40 m/s                    |
| Core volume                          | 10.9 m <sup>3</sup> (H/D ~1.7/2.9 m) |
| Core pressure drop                   | ~0.4 bar                             |
| Volume fraction (%) Fuel/Gas/SiC     | 50/40/10 %                           |
| Average power density                | 55 MW/m <sup>3</sup>                 |
| Reference fuel compound              | UPuC/SiC (50/50 %)                   |
| Breeding/Burning performances        | Self-Breeder                         |
| In core heavy nuclei inventory       | 30 tons                              |
| Fissile (TRU) enrichment             | ~20 wt%                              |
| Fission rate (at %); Damage          | ~5 at%; 60 dpa                       |
| Fuel management                      | multi-recycling                      |
| Fuel residence time                  | 3 × 829 efpd                         |
| Average Burn up rate at EOL          | ~5 % FIMA                            |
| Primary vessel diameter              | <7 m                                 |

### GFR R&D Needs

- Safety case difficult with low thermal inertia and poor heat transfer properties of coolant
  - Reliance on active and "semi-passive" systems for decay heat removal
  - Passive reactivity shutdown is also targeted
- High actinide-density fuels capable of withstanding high temperature and fast fluence
  - Modified coated particle or dispersion type fuels, e.g.,
    - (U,TRU)C/SiC
    - (U,TRU)N/TiN
  - Fuel pins with high-temperature cladding
- GRNS Core structural materials of the high temperature and

### GFR conceptual design studies



### Gas cooled Fast Reactor (GFR) candidate fuel technologies

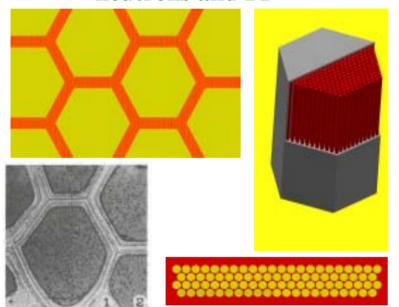
Dispersed fuels

Advanced fuel particles

50

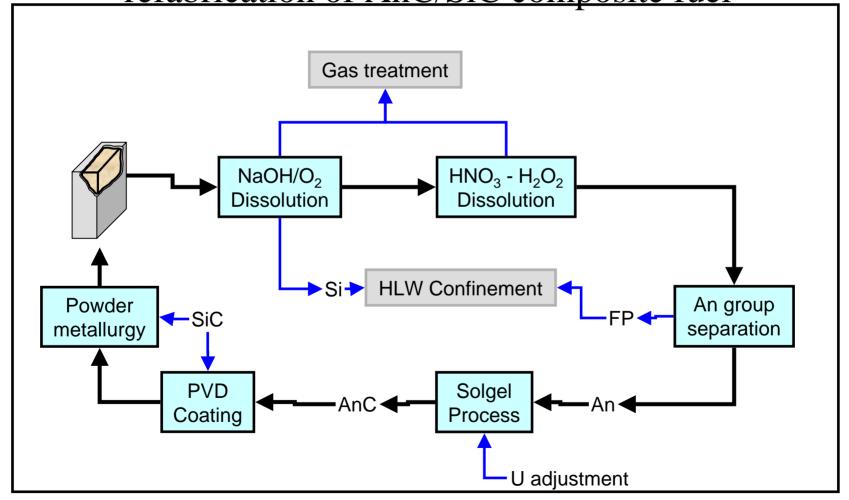
Advanced fuel particles

60


75

100

% of Actinide compound


### GFR candidate fuel technologies

- Composite ceramics fuel with coated actinides elements and high actinides contents
- Achieve comparable performances with coated fuel particles in terms of high temperature resistance and FP confinement
- Preserve inert matrix coatings from generalized damage by fast neutrons and FP



| Neutrons      | >1cm,            |
|---------------|------------------|
|               | collision        |
| Fission       | 10μm,            |
| products      | ionisation       |
| Particles α,  | 20μm,            |
| Не            | ionisation       |
| Recoil nuclei | <<1µm, collision |
|               | COMBION          |

Exemple of processes for the treatment and refabrication of AnC/SiC composite fuel



### GFR R&D Activities

- Basic approach
  - Early focus on concept development emphasizing safety-in-the-design
    - Characterize technical uncertainties
    - Focus technology development
  - Technology development (fuels, materials, etc.)
    - Produce basic data to reduce uncertainties
  - Confirmatory testing in follow-on phase
- R&D scope elements
  - Plant safety/concept development
  - Fuel development
  - Spent fuel treatment
  - High temperature materials
  - Safety/design calculation tools

    GRNS June 25-27 Presentation GP27-00

### **GFR Technical Issues**

- Achievable degree of passive safety
- Capability of materials to withstand targeted temperature and fast fluence conditions
- Effectiveness of recycle technologies
  - Actinide recovery factors
  - Waste quantity and durability
- Feasibility of economic design